
TECHNICAL REPORT 04-01

Partial Value Number Redundancy Elimination

Rei Odaira and Kei Hiraki

June 9, 2004

�
Department of Information Science

Faculty of Science, University of Tokyo

7–3–1 Hongo, Bunkyo-Ku Tokyo, 113 Japan

TECHNICAL REPORT 04-01

TITLE
Partial Value Number Redundancy Elimination

AUTHORS
Rei Odaira and Kei Hiraki

KEY WORDS AND PHRASES
partial redundancy elimination, global value numbering, optimizing compiler, just-in-time com-
piler, runtime compiler, Java virtual machine

ABSTRACT
When developing a redundancy elimination algorithm for a runtime optimizing compiler, not only its op-
timizing power but also its analysis speed must be considered. We propose a fast and efficient algorithm
called Partial Value Number Redundancy Elimination (PVNRE), which completely fuses Partial Redun-
dancy Elimination (PRE) and Global Value Numbering (GVN). Using value numbers in the data-flow
analyses, PVNRE can deal with data-dependent redundancy, and can quickly remove path-dependent
partial redundancy by converting value numbers at join nodes on demand during the data-flow analyses.
Compared with the naive combination of GVN, PRE, and copy propagation, PVNRE has a maximum
45% faster analyses speed, but the same optimizing power on SPECjvm98.

ANY OTHER IDENTIFYING INFORMATION OF THIS REPORT

DISTRIBUTION STATEMENT
First issue 30 copies.

SUPPLEMENTARY NOTES

REPORT DATE
June 9, 2004

TOTAL NO. OF PAGES
24

WRITTEN LANGUAGE
English

NO. OF REFERENCES
19

DEPARTMENT OF INFORMATION SCIENCE
Faculty of Science, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Partial Value Number Redundancy Elimination

Rei Odaira and Kei Hiraki,
Department of Computer Science,

Graduate School of Information Science and Technology,
University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
{ray, hiraki}@is.s.u-tokyo.ac.jp

Abstract

When developing a redundancy elimination algorithm for a runtime optimizing compiler, not only
its optimizing power but also its analysis speed must be considered. We propose a fast and efficient
algorithm called Partial Value Number Redundancy Elimination (PVNRE), which completely fuses
Partial Redundancy Elimination (PRE) and Global Value Numbering (GVN). Using value numbers
in the data-flow analyses, PVNRE can deal with data-dependent redundancy, and can quickly remove
path-dependent partial redundancy by converting value numbers at join nodes on demand during
the data-flow analyses.

Compared with the naive combination of GVN, PRE, and copy propagation, PVNRE has a
maximum 45% faster analyses speed, but the same optimizing power on SPECjvm98.

1 Introduction

Runtime optimizing compilers have recently gained widespread use in Java and other execution envi-
ronments. A runtime optimizing compiler needs to keep analysis time short, but at the same time, it
must reduce the execution time of generated code. Thus, the development of fast and efficient advanced
optimizations has become increasingly important. In this paper, we aim to manage both optimizing
power and analysis speed of redundancy elimination, an optimization that is frequently used in modern
optimizing compilers [15].

Redundancy elimination is an optimizing technique that removes instructions that compute the same
value as previously executed instructions. Partial Redundancy Elimination (PRE) [2, 3, 4, 12, 13, 14] and
Global Value Numbering (GVN) [1, 5, 7, 8] are the most widely used redundancy elimination algorithms.

PRE can eliminate redundancy on at least one (but not necessarily all) execution path leading to
an instruction (that is, partial redundancy). It deals with lexically identical instructions between which
there is no store for any of their operand variables. To remove the redundancy it has to solve three
data-flow equations for availability (AVAIL) and anticipatability (ANTIC) of instructions.

On the other hand, GVN can remove instructions that compute the same value on all paths even
when they are lexically different. GVN uses value numbering, which is an algorithm to detect redundancy
by assigning the same value number to a group of instructions that can be proved to compute the same
value by static analysis. One GVN variants called the bottom-up method uses a hash table to assign value
numbers to instructions [15]. It first transforms the whole program into the Static Single Assignment
(SSA) form [9] and then searches the hash table, using an operator for each instruction and the value
numbers of its operands as a key to the table. If the key has already been registered, a redundant
instruction is then found. If not, it generates a new value number and registers it to the table together
with the key. After value numbering, GVN performs dominator-based or availability-based redundancy
elimination, which removes instructions dominated by ones with the same value numbers, or instructions
whose value numbers are available.

Because of their complementary power, most modern optimizing compilers perform both GVN and
PRE [15]; that is, they first perform GVN, then convert the program back into the non-SSA form, and
finally execute PRE.

1

Table 1: Eight types of redundancy

data independent data dependent
path independent path dependent path independent path dependent

total (I): PRE, GVN (II): PRE (V): GVN (VI)
partial (III): PRE (IV): PRE (VII) (VIII)

There are, however, three types of redundancy in ordinary programs that neither of these methods
can eliminate, as described in Section 2. Thus, we need to perform PRE and copy propagation (CP)
iteratively after GVN[16]; we make as many instructions lexically identical as possible by propagating
copy instructions generated by the previous PRE, and remove the now-lexically-identical instructions
by the next PRE. In other words, from the upper stream of data dependency, we must perform both
PRE and CP for each depth level of the dependency, because PRE cannot deal with data dependency
in one pass. Therefore, this algorithm suffers from an overhead due to the iteration, which a runtime
optimizing compiler cannot ignore.

In this report, we propose Partial Value Number Redundancy Elimination (PVNRE), which fuses
GVN and PRE, and removes the need for the iteration of PRE and CP. PVNRE performs PRE-like
data-flow analyses, in which it uses not the lexical appearances of instructions but rather their value
numbers as GVN does. In contrast to PRE, PVNRE can deal with data dependency between value
numbers during data-flow analyses, and avoid the iteration of PRE and CP. Thus, it is as powerful as,
and faster than the combination of GVN and the iteration of PRE and CP.

The main contributions of our work are as follows.

• PVNRE is the first redundancy elimination algorithm that tackles the iteration of PRE and CP,
and succeeds in managing both optimizing power and analysis speed.

• To allow PVNRE to include the powerful features of PRE, we developed a new algorithm to convert
value numbers through φ functions of the SSA form on demand during data-flow analyses. Thus,
we need not construct any special representation of redundancy such as a Value Flow Graph [19]
in advance of the analyses.

• We show that by assigning incremental value numbers to instructions the numbers can themselves
represent data dependency. PVNRE is the first method that exploits this property in processing
the value numbers in the order of their data dependency during data-flow analyses.

• We present the effectiveness of PVNRE by implementing it in our just-in-time compiler and con-
ducting experiments using real benchmarks.

The rest of the report is organized as follows. Section 2 presents the types of redundancy we deal
with in this report, and explains the inefficiencies of the existing algorithms to remove such redundancies.
Section 3 and 4 introduce the overview of PVNRE and basic notations. Section 5 describes the algorithm
of PVNRE and Section 6 shows the experimental results. Section 7 reviews related work, and Section 8
sets out the conclusion.

2 Background

We categorize the redundancy we deal with in this report into eight types (Type I – VIII) as shown in
Table 1. We also show in the table which types of redundancy PRE and GVN can detect and eliminate.

Figure 1 illustrates the four types of redundancy PRE can detect. PRE removes the computations
of Instructions (Insns.) 3, 7, 12, 15, and 19 by using a temporary variable “t” as exemplified in Type
IV(b) of the figure.

In contrast, GVN can detect Types I and V. Precisely speaking, availability-based GVN can detect
both (1) and (2) of Type I in Fig. 1, while dominator-based GVN can detect only (1).

GVN cannot detect Type II because of the path-dependent redundancy; depending on the execution
path that leads to it, Insn. 12 computes different values, since “a” refers to the different definitions
(Insns. 8 and 10). The path-dependency becomes clearer if we convert the program into the SSA form

2

4 a := read()

7 z := a + 1

6 y := a + 1

Type I (2)

8 a := read()
9 x := a + 1

12 z := a + 1

10 a := read()
11 y := a + 1

Type II

16 a := read()
17 x := a + 1

19 z := a + 1

18 a := read()

Type IV (a)

5 x := a + 1

13 a := read()

15 z := a + 1

Type III

14 x := a + 1
16 a := read()
17 t := a + 1
 x := t

19 z := t

18 a := read()
 t := a+ 1

Type IV (b)

1 a := read()
2 x := a + 1

3 z := a + 1

Type I (1)

Figure 1: Examples of optimization by PRE

1 a := read()
2 b := a + 1
3 c := b + 2

4 b := a + 1
5 y := b + 2

Type V (a)

1 a := read()
2 b := a + 1
3 c := b + 2

4 b := b
5 y := c

Type V (b)

8 a0 := read()
9 x := a0 + 1

 a2 := φ(a0, a1)
12 z := a2 + 1

10 a1 := read()
11 y := a1 + 1

Type II

Figure 2: Examples of optimization by GVN

as in Fig. 2 Type II. The newly inserted φ function is a pseudo function that merges more than one
definitions of a variable at a join node. Thus, Insns. 8, 10, and the φ function are assigned distinct value
numbers, and so are Insns. 9, 11, and 12, which makes it impossible to detect the redundancy among
them.

The reason GVN cannot detect Type III is that Insn. 14 does not dominate Insn. 15, nor make the
value number of “a + 1” available at Insn. 15 due to its partial redundancy. Type IV in Fig. 1 is a
combination of Types II and III, so that it also cannot be detected by GVN.

Figure 2 Type V illustrates the type of redundancy GVN can remove but PRE cannot. Insns. 2 and
4, and 3 and 5 are assigned the same value numbers; hence, we can eliminate the redundancy by using
the transformation shown in (b). In particular, although Insns. 3 and 5 are lexically identical, their
redundancy cannot be removed by PRE because there is a store for the operand between them (Insn. 4),
or in other words, because they are data-dependent on different instructions (Insns. 2 and 4). Therefore,
we call this type of redundancy between Insns. 3 and 5 a data-dependent redundancy.

As described in Sect. 1, most modern optimizing compilers perform both GVN and PRE; but other
types of redundancy (Fig. 3), which neither of them can eliminate, can also be encountered in real
programs. For example, a data-dependent chain of loop invariants, which can frequently be found in
address computations of loop-invariant array loads, is one of the variants of Type VII as shown in Fig.
3 Type VII (2).

Thus, after GVN, we have to perform PRE and copy propagation (CP) iteratively to completely
eliminate such redundancies 1 . For example, in Fig. 4, (a) is the same as Type VII (2) in Fig. 3. The
first PRE moves Insn. 7 out of the loop (b). It cannot move Insn. 8 because this is data-dependent
on Insn. 7. The generated copy instruction is then propagated to Insn. 8 (c). Finally, since the data
dependency has been removed, the second PRE can move Insn. 8 out of the loop (d). The redundancies
of Types VI and VIII in Fig. 3 can be eliminated in the same manner.

The diagram of the resulting algorithm, which we call GVN+PRECP, is shown in the left-hand side
of Fig. 5. However, the inefficiencies in the algorithm are as follows.

• To collect the local information of instructions in PRE, a hash table is used to number each lexical
appearance of instructions. This operation is similar to value numbering in GVN.

1 In fact, if we iterate PRE and CP, we need not perform GVN from the point of view of optimizing ability. However,
we should perform GVN first because it can eliminate Type V much faster than the iteration of PRE and CP.

3

6 a := read()

7 b := a + 1
8 c := b + 2

9 a := read()
10 b := a + 1
11 c := b + 2

12 a := read()
13 b := a + 1
14 c := b + 2

15 b := a + 1
16 c := b + 2

Type VI

17 a := read()
18 b := a + 1
19 c := b + 2

20 a := read()

21 b := a + 1
22 c := b + 2

Type VIII

2 b := a + 1
3 c := b + 2

4 b := a + 1
5 c := b + 2

1 a := read()

Type VII (1)

Type VII (2)

Figure 3: GVN+PRE cannot optimize these types of redundancy

6 a := read()

7 b := a + 1
8 c := b + 2

6 a := read()
7 s := a + 1

 b := s
8 c := b + 2

6 a := read()
7 s := a + 1

 b := s
8 c := s + 2

6 a := read()
7 s := a + 1
8 t := s + 2

 b := s
 c := t

(a) (b) (c) (d)

Figure 4: Sequence of optimization by iteration of PRE and CP

• In spite of the fact that copy propagation is trivial in the SSA form, we cannot perform it in that
form during PRECP because PRE is based on a non-SSA form.

• For each iteration of the loop, we must set up data structures and collect information for all
instructions in the program, although most of them might be unaffected by that iteration.

In the next section, we describe PVNRE, a redundancy elimination algorithm which overcomes these
inefficiencies of GVN+PRECP.

3 Overview of PVNRE Algorithm

PVNRE aims to provide equal or better optimizing power with faster analysis speed than GVN+PRECP.
The overview of the algorithm is shown on the right-hand side of Fig. 5. The main features of this

algorithm are as follows.

• Using value numbers in the PRE-like data-flow analyses, it can detect not only the redundancies
of Types I and V like GVN, but also partial redundancies, particularly Types III and VII. (Sect.
5.1, 5.3, and 5.8)

• Path-dependent redundancy is detected by converting value numbers through φ functions on de-
mand during data-flow analyses. It is worth noting that the reason GVN cannot detect the path-
dependent redundancy is the existence of φ functions in the SSA form. (Sect. 5.4, 5.5, and 5.6)

• PVNRE assigns value numbers so that the numerical order can represent data dependency. This
constraint allows it to deal with data-dependent redundancy during data-flow analyses and redun-
dancy elimination. (Sect. 5.1, 5.4, 5.5, and 5.10)

• Instead of iterating PRE and CP for all instructions, PVNRE uses iterations for only the essential
subset of the instructions; it iterates the value number conversion at the innermost loop of data-flow
analyses to detect the redundancies of Types VI and VIII. Thus, it is faster than GVN+PRECP.
(Sect. 5.4 and 5.5)

4

Assign value numbers

Eliminate redundancy
based on dominator or
availability

Convert the program
into a non-SSA form

Set up data structures

Collect local information

Solve three data flow
equation systems

Eliminate redundancy

Do global copy propagation

Set up data structures

GVN + PRECP PVNRE

Assign value numbers

Set up data structures

Solve four data flow
equation systems with
value number conversion

Eliminate redundancy

Recover the SSA property
+ global copy propagation

Do global copy propagation

Figure 5: GVN+PRECP and PVNRE algorithms

• PVNRE performs copy propagation on the SSA form. (Sect. 5.4)

In fact, PVNRE can remove redundancies beyond the ones listed in Table 1, but such types of redundancy
are rarely found in real programs.

4 Preliminaries

Without loss of generality, we make the following assumptions about a program.

• The program has already been transformed into the SSA form.

• The control flow graph is reducible.

• The nesting relationship of the loops has already been analyzed.

• The critical edges have already been removed.

• Each basic block has at most two preceding blocks, which implies that every φ function is binary.

A program is a directed graph G = 〈Nodes ,Edges , start , end〉 with the instruction set Nodes , the
edge set Edges , the unique start instruction start , and the unique end instruction end . m→n denotes
an edge from m to n. BBNodes represents the basic block set. Pred(N) denotes the preceding blocks of
N ∈ BBNodes , Succ(N) the succeeding blocks, Head(N) the first instruction, and BB(n) the block to
which n ∈ Nodes belongs.

P [m, n] represents the set of all the paths from m to n. λ(p) is the length of a path p, and pi is its ith
instruction (1 ≤ i ≤ λ(p)). In addition, p[i, j] indicates the sub-path from the ith to the jth instruction.
Value(p, i) denotes the value computed by the ith instruction on p

The set of all operators Operators consists of arithmetic operators Normal , a copy operator Copy ,
φ functions Phi , and the other operators Fixed . Fixed includes function calls and memory operators.
We define Op as a function from each instruction to its operator (Nodes → Operators), writing n.Op for
n ∈ Nodes , and φN as an operator of a φ function in a block N .

As with Phi , we assume that Normal has exactly two operands and Copy has only the left operand.
We define Lt and Rt as functions from each instruction to its operands (Nodes → Nodes), writing n.Lt
and n.Rt. However, when there is no need to distinguish between them, we write one of them as n.X
and the other as n.Y .

5

The value number set Nums is a subset of natural numbers N , and a value numbering Num can be
defined as a function of Nodes → Nums. We make Op, Lt , and Rt also take the roles of functions from
each value number to its operator and operand value numbers, respectively.

5 Algorithm Details

5.1 Value Numbering

The value numbering in PVNRE shown in Fig. 6 is the same as that for GVN, except that (1) it
computes backedges (Bedges) and transparency (UnTransp), and (2) it must assign incremental value
numbers (Line 9 and 26). GEN is used as local information in the following data-flow analyses. Backedges
and transparency is described in Sect. 5.3.

Incremental value numbers ensures the following constraint (Definition 5.1), which means that Insn.
x is assigned a greater number than Insn. y if x is data-dependent on y. This is because in value
numbering we must number instructions in the data dependency order (the reverse post order in Line 5
and the pre-order in Line 7), so that we can use the value numbers of the left and right operands as a
key to the hash table.

Definition 5.1 (Numerical Order Constraint). For α ∈ Nums,

α.Op ∈ Normal ⇒ α.X < α .

PVNRE utilizes this numerical order in the following data-flow analyses to process value numbers in
data dependency order.

5.2 Data-Flow Analyses

After value numbering, PVNRE solves four data-flow equation systems for AVAILall , AVAILsome ,
ANTIC all , and AVAILMsome . These are the framework for PRE proposed by Bodik et al. [3]. AVAILall

and AVAILsome represent the availability on all paths and some paths respectively, while ANTIC all

denotes the anticipatability on all paths. AVAILMsome is akin to AVAILsome , but a condition is added
to prevent speculative insertion of instructions. We refer readers to the paper by Bodik et al. [3] for
more details about these predicates. Here, we focus on the differences between their work and PVNRE,
namely, transparency and value number conversion.

5.3 Transparency

Transparency is a condition that determines whether or not data-flow information is valid beyond a
block or an edge in data-flow analysis. In traditional PRE, the propagated information (AVAIL or
ANTIC) of an instruction is invalidated if a block contains a store for an operand variable of the
instruction. PVNRE, on the other hand, does not need such kind of condition because it can deal with
data-dependent redundancy as illustrated in Fig. 2 Type V.

In PVNRE, however, we need special treatment for backedges. For example, in Fig. 7(1), if we
allowed the AVAIL of the value numbers of Insn. 6 to flow through the backedge, the information would
reache Insn. 6 again; hence, we would consider it to be a loop invariant However, since Insn. 6 is an
induction variable, this does not happen and it returns different values for each iteration of the loop.

To solve the problem, we define transparency for value numbers and backedges: the value numbers
of instructions that may compute different values for each iteration of a loop are invalidated at the
backedge of the loop. The reason an instruction computes different values for each iteration is that it is
data-dependent on a φ function or a function call inside the loop. Thus, we first define DefBBNodes for
Fixed and Phi value numbers, which is a set of the basic blocks containing instructions that generate a
value number.

6

1 for each e ∈ Edges do
2 UnTransp(e) := ∅
3 end
4 VN := 0
5 for each N ∈ BBNodes in reverse post order do
6 GEN (N) = ∅
7 for each n ∈ N in pre-order do
8 if n.Op ∈ Fixed ,Phi then
9 VN := VN + 1

10 VN .Op := n.Op
11 Bedges(VN) := the set of the enclosing backedges of N

12 Num(n) := VN
13 else if n.Op ∈ Copy then
14 Num(n) := Num(n.Lt)
15 else
16 α := call Hash(n.Op,Num(n.Lt),Num(n.Rt))
17 Num(n) := α
18 GEN (N) := GEN (N) ∪ {α}
19 end
20 end
21 end
22
23 Hash(op, l, r) {
24 If 〈op, l, r〉 is registered, returns the corresponding VN .
25 If not,
26 VN := VN + 1
27 Register VN with 〈op, l, r〉.
28 VN .Op := op; VN .Lt := l ; VN .Rt := r
29 Bedges(VN) := Bedges(l) ∪ Bedges(r)
30 for each b ∈ Bedges(VN) do
31 UnTransp(b) := UnTransp(b) ∪ {VN}
32 end
33 return VN
34 }

Figure 6: Algorithm for value numbering

2 i1 := φBB2(i0, i2)
3 a := i0 + 1
4 b := read()
5 c := i0 + b
6 i2 := i1 + 1

1 i0 := read()

7 x := i1
8 y := b
9 z := x + y

BB1

BB2

BB3

bedge

1

2
3
4
5
6

2
4
7

Value No. Transp Description

 1 true DefBBNodes(1) is outside the loop.
 2 false DefBBNodes(2) is inside the loop.
 3 true It is inside the loop, but its operand refers to
 the value number of the instrucion outside
 the loop, so it is loop-invariant.
 4 false DefBBNodes(4) is inside the loop.
 5 false One of its operand refers to the value number
 of the instruction inside the loop.
 6 false The same as 5.
 7 false It is outside the loop, but its operands refer to
 the value numbers of the instructions inside
 the loop.

Figure 7: Example of backedge and transparency

7

Definition 5.2 (DefBBNodes for Fixed). For α ∈ Nums s.t. α.Op ∈ Fixed,

DefNodes(α) def= {n ∈ Nodes | Num(n) = α ∧ n.Op = α.Op}
DefBBNodes(α) def=

⋃
∀n

BB(n) s.t. n ∈ DefNodes(α) .

Definition 5.3 (DefBBNodes for Phi).
For α ∈ Nums s.t. α.Op = φN ∈ Phi , DefBBNodes(α) def= {N } .

In Fig. 7, DefBBNodes(2) = {BB2} and DefBBNodes(4) = {BB2}. Since Insn. 7 and 8 are copy
instructions, they are not considered to generate their own value numbers.

5.3.1 Backedges

Backedges can be defined as Bedges def= {m→n | n dom m}, where dom denotes domination relationship.
Here, we define backedges for each instruction and block as follows.

Definition 5.4 (Backedges for an instruction and a basic block).
For u ∈ Nodes and N ∈ BBNodes,

Bedges(u) def= {e = m→n | e ∈ Bedges ∧ ∃p ∈ P [u,m] ∀1 ≤ i ≤ λ(p) . pi
= n}
Bedges(N) def= Bedges(Head(N)) .

That is, they represent all the backedges of the loops enclosing the instruction or the block. In Fig. 7,
Bedges for Insn. 2–6 and BB2 is {bedge}, and Bedges for the other instructions is ∅.

5.3.2 Transparency

We define the transparency in PVNRE as follows.

Definition 5.5 (Transp). For α ∈ Nums and e ∈ Edges,
(1) if α.Op ∈ Fixed ∨ α.Op ∈ Phi , then

Transp(α, e) def⇔ e /∈
⋃
∀N

Bedges(N) s.t. N ∈ DefBBNodes(α),

(2) otherwise
Transp(α, e) def⇔ Transp(α.Lt , e) ∧ Transp(α.Rt , e) .

A Fixed value number is not allowed to propagate through the enclosing back-edges because we assume
that a memory load or a function call returns different values each time it is executed. Propagation is not
allowed for Phi in the same way because we cannot determine statically which of the merged definitions
is actually referred to for each execution. For Normal , its value is considered to be invalid beyond a
backedge of a loop iff. one of its operands’ values is invalid beyond the backedge. Figure 7 shows Transp
for bedge for each value number.

We also naturally extend the definition of Transp to any path.

Definition 5.6 (Transp∀).
For α ∈ Nums, p ∈ P [start , end], 1 ≤ i < j ≤λ(p),

Transp∀(α, p[i , j]) def⇔
∧

∀i≤k<j

Transp(α, pk→pk+1) .

During value numbering, PVNRE computes the enclosing backedges for a φ function and a function
call (Fig. 6 Line 11). Other instructions inherit backedges from the data-dependent instructions (Line
29), and register themselves to UnTransp (the complementary set of the transparency) for the backedges
(Line 30 – 32).

Alternatively, we could invalidate value numbers not at the backedges but at the φ functions or the
function calls on which they are data-dependent. However, if we did so we would need to compute
UnTransp for all the basic blocks, and set up upward and downward GEN separately, which would
result in longer analysis time. To the best of our knowledge, PVNRE is the first redundancy elimination
algorithm to use backedge-based transparency.

8

1 a0 := read()
2 b := a0 + 1
3 c := b + 2

7 a2 := φ(a0, a1)
8 x := a2 + 1
9 y := x + 2

4 a1 := read()
5 m := a1 + 1
6 n := m + 2

1
2
3

4
5
6

7
8
9

1 4

AVAIL 2, 3 AVAIL 5, 6

t l r
7 1 4

JT(BB3) JT’(BB3) Hash Table

7 1 4
8 2 5

t l r

8 2 5

 op l r
2 + 1 const1
3 + 2 const2
5 + 4 const1
6 + 5 const2
8 + 7 const1
9 + 8 const2

BB1 BB2

BB3

7 1 4
8 2 5
9 3 6

8 2 5
9 3 6

AVAIL 8, 9

Figure 8: Example of value number conversion for Type II and VI

5.4 Examples of Value Number Conversion

If we only propagate value numbers on PRE-like data-flow analyses, we cannot detect path-dependent
redundancies (Types II, IV, VI, and VIII) as we described in Sect. 2. To solve the problem, we convert
value numbers at join nodes on demand during data-flow analyses, using φ functions.

PVNRE uses two sets, JT (N) and JT ′(N), which are defined for each join node N . Their elements
are of the form 〈t, 〈l, r〉〉, which means “value number l and r join at N , and are converted into t.”
JT (N) is initialized by the φ functions in N in the original program, and JT ′(N) is set to ∅. PVNRE
uses and adds elements to JT and JT ′ while solving AVAILall and AVAILsome . To solve ANTIC all and
AVAILMsome , it just uses JT ′, adding no more elements.

5.4.1 Types II and VI (Path-Dependent Total Redundancy).

We use the example in Fig. 8. Value numbers (italic numbers 1 – 9) are already assigned as the hash
table shows. Assume that we are now processing basic block 3 (BB3) for the first time while we are
computing the maximum fixed points for AVAILall and AVAILsome . JT is initialized as {〈7 , 〈1 , 4 〉〉} by
the φ function (Insn. 7).

Now we have to compute AVAILall
in (BB3) and AVAILsome

in (BB3). 2 and 3 are available from the left,
so that we process 2 first, utilizing the constraints between the numerical order and the data dependency
described in Sect. 5.1. We search the “l” column of JT for 1 (the left operand of 2). We need not search
for the right operand, because it is constant 1, and is not subject to conversion. We find an element in
JT 2 , which indicates that 1 merges with 4 and is converted into 7. Now we search the hash table for
“4 + const1” and “7 + const1,” finding 5 and 8. Thus we add a new element 〈8 , 〈2 , 5 〉〉 to JT and
JT ′. In the same manner, we process 3 and add another element 〈9 , 〈3 , 6 〉〉. Note that if we process 3
first, we cannot convert either 2 or 3. Then we process 5 and 6 from the right, but we need not add any
more elements. Consequently, AVAILall

in = {8 , 9}, AVAILsome
in = {2 , 3 , 5 , 6 , 8 , 9 }. We propagate them

into BB3, and finally detect the redundancy of Insn. 8 (Type II) and Insn. 9 (Type VI), because their
value numbers are available. When we process BB3 again during the computation of the maximum fixed
points, we need not repeat the process again for 2, 3, 5, and 6, but just use JT ′. In the same way, we
also use JT ′ to compute ANTIC all and AVAILMsome .

Indeed, it is not mandatory to compute AVAILsome , but we do so in order to speed up the analyses
that follow; if not, we would have to update JT ′, even during the computation of ANTIC all . This is
because the number of propagated value numbers in AVAILall is so small that the resulting JT ′ would
not have enough elements to convert value numbers backward for ANTIC all .

5.4.2 Types IV and VIII (Path-Dependent Partial Redundancy).

For the path-dependent partial redundancy, we must generate new value numbers during the conversion.
For example, in Fig. 9, when we process 2, we cannot find “4 + const1” in the hash table. Then we
generate a new value number 8, and register it to the hash table3 . The same goes for 3, and 9 is

2 If we could not found any, then 2 would not be converted at BB3.
3 If we cannot find a conversion target (in this case, “5 + const1”), we generate another value number, and let it

propagate down.

9

1 a0 := read()
2 b := a0 + 1
3 c := b + 2

5 a2 := φ(a0, a1)
6 x := a2 + 1
7 y := x + 2

4 a1 := read()1
2
3

4

5
6
7

1 4

AVAIL 2, 3

t l r
5 1 4

JT(BB3) JT’(BB3) Hash Table

5 1 4
6 2 8

t l r

6 2 8

 op l r
2 + 1 const1
3 + 2 const2
6 + 5 const1
7 + 6 const2

BB1 BB2

BB3

5 1 4
6 2 8
7 3 9

6 2 8
7 3 9

8 + 4 const1
9 + 8 const2

+

1 r1 := read()
 a0 := r1
2 r2 := a0 + 1
 b := r2
3 r3 := b + 2
 c := r3

5 r5 := φ(a0, a1)
 r6 := φ(r2, r8)
 r7 := φ(r3, r9)
 a2 := r5
6 x := r6
7 y := r7

4 r4 := read()
 a1 := r4
 r8 := r4 + 1
 r9 := r8 + 2

BB1 BB2

BB3
AVAIL 8, 9

Figure 9: Example of value number conversion for Type IV and VIII, and the result of redundancy
elimination

generated. Consequently, AVAILall
in = ∅, AVAILsome

in = {2 , 3 , 6 , 7 }, so that we can detect the partial
redundancy of Insn. 6 (Type IV) and Insn. 7 (Type VIII).

5.4.3 Redundancy Elimination

After the computation of AVAILall , AVAILsome , ANTIC all , and AVAILMsome , we insert new instructions
into edges and remove all redundancies as in [3]. We show an example of redundancy elimination in the
right-hand side of Fig. 9. We use a new variable “rn” for a value number n. For a non-redundant
instruction, the value is stored into “rn,” For a redundant instruction, the expression is replaced with
“rn.” For each element in JT ′, a new φ function is inserted. To make partially redundant instructions
totally redundant, new instructions are inserted at certain edges to join nodes [3]. For example, we must
insert instructions to compute 8 and 9 at the tail of BB2. Thus, consulting the hash table, “r8 := r4
+ 1” and “r9 := r8 + 1” are inserted in the data dependency order, or the numerical order of the value
numbers.

After redundancy elimination, we must recover the SSA property because “rn” can be assigned at
more than one place. We use the algorithm proposed by Cytron et al. [9], and at the same time perform
copy propagation.

5.5 Value Number Conversion Algorithm

The program code to compute AVAILall and AVAILsome is shown in Fig. 10 and 11. Let lnk be 〈l, r〉
s.t. 〈trgt , 〈l , r〉〉 ∈ JT (N), and el, er the incoming edges of N , we denote lnk(el) = l and lnk(er) = r .
We define AVAILsome not only for blocks but also for edges to record AVAILsome

out of their source blocks
(Fig. 11 Line 23).

JT (N) is initialized by the φ functions in N in the original program (Fig. 10 Line 3), and JT ′(N) is
set to ∅ (Line 5). We compute maximum fixed points for AVAILall and AVAILsome at Fig. 10 Line 12
– 24. We first update JT ′(N) in ConvThroughPhi (Line 16), and use it to compute new AVAILall

in (N)
and AVAILsome

in (N) in CompAVin (Line 18).
To update JT ′ (and JT), we convert the value numbers that have reached N for the first time (Fig.

11 Line 3). The ascending order (Line 4) ensures that we process them from the upper stream of data
dependency. We search JT (N) for the left and right operands of α at Line 5 and 6. Line 10 corresponds
to the situation where both of the operands are converted, while Line 14 and 19 to the situation where
either left or right operand is converted respectively. DoConv updates JT (N) and JT ′(N) at Line 44
and 45. The newly-added element can be used at Line 5 and 6 of the following iterations of the same
loop (Line 4–22) to convert data-dependent value numbers.

The computation of ANTIC all and AVAILMsome is done in a similar manner except that we need
not update JT any more.

10

1 for each N ∈ BBNodes do
2 for each n ∈ N . n.Op ∈ Phi do
3 JT (N) ∪ :={〈Num(n), 〈Num(n.Lt), Num(n.Rt)〉〉}
4 end
5 JT ′(N) := ∅
6 AVAILall

out(N) := �,AVAILsome
out (N) := ∅

7 end
8 for each e ∈ Edges do
9 AVAILsome(e) := ∅

10 end
11
12 AVAILall

out (start) := ∅, W := Succ(start)
13 while W �= ∅ do
14 N ∈ W, W := W \ N
15 for each M ∈ Pred(N) do
16 call ConvThroughPhi(M, N)
17 end
18 call CompAVin(N)
19 AVAILall

out(N) := AVAILall
in (N) ∪ GEN (N)

20 AVAILsome
out (N) := AVAILsome

in (N) ∪ GEN (N)
21 if AVAILall

out(N) or AVAILsome
out (N) changed then

22 W ∪ :=Succ(N)
23 end
24 end
25
26 CompAVin(N) {
27 AVAILall

in (N) := �, AVAILsome
in (N) := ∅

28 for each M ∈ Pred(N) do
29 AVAILall

in (N) ∩ :=(AVAILall
out(M) − UnTransp(M→N))

30 AVAILsome
in (N) ∪ :=(AVAILsome

out (M) − UnTransp(M→N))
31 end
32 for each 〈trgt , lnk 〉 ∈ JT ′(N) do
33 if ∀M ∈ Pred(N) . lnk (M→N) ∈ AVAILall

out(M) then
34 AVAILall

in (N) ∪ :={trgt}
35 end
36 if ∃M ∈ Pred(N) . lnk (M→N) ∈ AVAILsome

out (M) then
37 AVAILsome

in (N) ∪ :={trgt}
38 end
39 end
40 }

Figure 10: Algorithm for AVAILall and AVAILsome (the first half)

11

1 ConvThroughPhi(M, N) {
2 e := M→N
3 diff := (AVAILsome

out (M) − AVAILsome(e))
4 for each α ∈ diff in ascending order do
5 ljs := {〈trgt , lnk〉 ∈ JT (N) | lnk(e) = α.Lt}
6 rjs := {〈trgt , lnk〉 ∈ JT (N) | lnk (e) = α.Rt}
7 if ljs �= ∅ then
8 if rjs �= ∅ then

9 for each 〈l, llnk〉 ∈ ljs, 〈r , rlnk〉 ∈ rjs do
10 call DoConv(N, α, l, llnk , r , rlnk)
11 end
12 else if α.Rt ∈ Transp(e) then
13 for each 〈l, llnk〉 ∈ ljs do
14 call DoConv(N, α, l, llnk , α.Rt , nil)
15 end
16 end
17 else if rjs �= ∅ ∧ α.Lt ∈ Transp(e) then
18 for each 〈r, rlnk〉 ∈ rjs do
19 call DoConv(N, α, α.Lt, nil, r , rlnk)
20 end
21 end
22 end
23 AVAILsome(e) := AVAILsome

out (M)
24 }
25
26 DoConv(N, α, l, llnk , r , rlnk) {
27 trgt := call Hash(α.Op, l , r)
28 if ∃x . 〈trgt , x〉 ∈ JT (N) then
29 return end
30 for each M ∈ Pred(N) do
31 if llnk = nil then
32 lt := l
33 else
34 lt := llnk (M→N)
35 end
36 if rlnk = nil then
37 rt := r
38 else
39 rt := rlnk(M→N)
40 end
41 β := call Hash(α.Op, lt , rt)
42 lnk(M→N) := β
43 end
44 JT (N) ∪ :=〈trgt , lnk〉
45 JT ′(N) ∪ :=〈trgt , lnk〉
46 }

Figure 11: Algorithm for AVAILall and AVAILsome (the second half)

12

5.6 Formalization of Value Number Conversion

As shown in the previous section, PVNRE joins two value numbers together which satisfy certain con-
ditions at a join node. It then converts them into a new value number, and transfers it to the following
nodes. The joinability is defined as follows.

Definition 5.7 (Jtarget and Jtarget ′). For M, N ∈ BBNodes s.t. M ∈ Pred(N) and α0, α1 ∈ Nums,
Jtarget(N, α0, α1)

def= (1) ∪ (2) ∪ (3), and Jtarget ′(N, α0, α1)
def= (2) ∪ (3), where

(1) {α ∈ Nums | ∃n ∈ Nodes s.t. α = Num(n)
∧ n.Op = φN ∧Num(n).Op = φN ∧ α0 = Num(n.Lt) ∧ α1 = Num(n.Rt)}

(2) {α2 ∈ Nums | α2 .Op = α0 .Op = α1 .Op ∈ Normal
∧ α2 .X ∈ Jtarget(N , α0 .X , α1 .X)
∧ α2 .Y = α0 .Y = α1 .Y ∧ Transp(α2 .Y ,M→N)}

(3) {α2 ∈ Nums | α2 .Op = α0 .Op = α1 .Op ∈ Normal
∧ α2 .Lt ∈ Jtarget(N , α0 .Lt , α1 .Lt) ∧ α2 .Rt ∈ Jtarget(N , α0 .Rt , α1 .Rt)} .

Set (1) denotes that a φ function is the basis of joinability; it is Jtarget ′ that represents the actual
recursive joinability of value numbers. Set (2) is the case where one of the operands of α0 joins with the
corresponding operand of α1. Set (3) describes the case where both of the operands join.

In Fig. 8, it can be proved that

Jtarget(BB3, 1 , 4) = {7},
Jtarget(BB3, 2 , 5) = Jtarget ′(BB3, 2 , 5) = {8},
Jtarget(BB3, 3 , 6) = Jtarget ′(BB3, 3 , 6) = {9} .

In Fig. 9,

Jtarget(BB3, 1 , 4) = {5},
Jtarget(BB3, 2 , 8) = Jtarget ′(BB3, 2 , 8) = {6},
Jtarget(BB3, 3 , 9) = Jtarget ′(BB3, 3 , 9) = {7} .

We also define Jlink (and Jlink ′) as a set of the value numbers to which a value number is converted.

Definition 5.8 (Jlink and Jlink ′). For M, N ∈ BBNodes s.t. M ∈ Pred(N)
and α ∈ Nums, Jlink(N , α,M→N) def=
(1) if M is the left preceding block of N , then

⋃
∀β Jtarget(N, α, β)

(2) if M is the right preceding block of N , then
⋃

∀β Jtarget(N, β, α) .

Jlink ′ is defined in the same way using Jtarget ′.

In Fig. 8,

Jlink(BB3, 1 , BB1→BB3) = {7}, Jlink(BB3, 4 , BB2→BB3) = {7},
Jlink(BB3, 2 , BB1→BB3) = Jlink ′(BB3, 2 , BB1→BB3) = {8},
Jlink(BB3, 5 , BB2→BB3) = Jlink ′(BB3, 5 , BB2→BB3) = {8},
Jlink(BB3, 3 , BB1→BB3) = Jlink ′(BB3, 3 , BB1→BB3) = {9},
Jlink(BB3, 6 , BB2→BB3) = Jlink ′(BB3, 6 , BB2→BB3) = {9} .

We omit Jlink and Jlink ′ for Fig. 9.

5.7 Soundness

In order to have PVNRE work correctly, we must assign value numbers so that Op, Lt , Rt , and Num
satisfy the soundness defined later in this section. We first define DefNodes for Normal , Phi , and Copy .
DefNodes for Fixed has already been defined in Definition 5.2.

13

1 a0:=read()
2 x0:=a0+1

BB1

3 a1:=read()
4 x1:=a1+1

BB2

5 a2:=φΒΒ3(a0, a1)
6 x2:=φBB3(x0, x1)
7 y:=a2+1

BB3

1
2

3
4

5
6
6

 Op Lt Rt DefNodes
1 read() -- -- 1
2 + 1 const1 2

3 read() -- -- 3
4 + 2 const1 4

5 φBB3 1 3 5
6 + 5 const1 6,7

Figure 12: Example of sound value numbering

Definition 5.9 (DefNodes). For α ∈ Nums,
(1) if α.Op ∈ Normal

DefNormalNodes(α) def= {n ∈ Nodes | Num(n) = α ∧ n.Op = α.Op}
DefPhiNodes(α) def= {n ∈ Nodes | Num(n) = α ∧ n.Op ∈ Phi

∧Jtarget ′(BB(n),Num(n.Lt),Num(n.Rt))
= ∅
∧Num(n.X).Op = α.Op}

DefNodes(α) def= DefNormalNodes(α) ∪DefPhiNodes(α)

(2) if α.Op ∈ Phi

DefNodes(α) def= {n ∈ Nodes | Num(n) = α ∧ n.Op = α.Op
∧Num(n.X)
= α

∧Jtarget ′(N,Num(n.Lt),Num(n.Rt)) = ∅}
(3) if α.Op ∈ Copy

DefNodes(α) def= {n ∈ Nodes | Num(n) = α ∧ n.Op = α.Op
∧Num(n.Lt)
= α} .

DefPhiNodes implies that φ functions whose operands satisfy joinability can be DefNodes for a value
number whose operator is Normal . For exmaple, in Fig. 12, the operator of Insn. 6 is φ, but the operator
of its value number 6 is + ∈ Normal because its operands 2 and 4 merge at BB3.

Using DefNodes , we define the soundness for Op, Lt , and Rt.

Definition 5.10 (Soundness of Op.) Op for value numbers satisfies soundness def⇔ for α ∈ Nums,

∃n ∈ Nodes . Num(n) = α ⇒ DefNodes(α)
= ∅ .

For example, if we define α.Op = read() ∈ Fixed for a value number α and there exists an instruction
with value number α in the program, there must be at least one instruction whose operator is read()
and whose value number is α.

Definition 5.11 (Soundness of Lt and Rt.) Lt for value numbers satisfies soundness def⇔ for α, β ∈
Nums, α.Lt = β ∧ ∃n ∈ Nodes . Num(n) = α ⇒
(1) if α.Op ∈ Normal

∃n ∈ DefNormalNodes(α) . Num(n.Lt) = β

∨∃n ∈ DefPhiNodes(α) .

(Jtarget ′(BB(n),Num(n.Lt).Lt ,Num(n.Rt).Lt) � β

∨Num(n.Lt).Lt = Num(n.Rt).Lt = β)

14

(2) if α.Op ∈ Phi ,Copy

∃n ∈ DefNodes(α) . Num(n.Lt) = β .

Soundness of Rt is defined in the same manner.

Definition 5.12 (Soundness of Value Numbering). A value numbering Num satisfies soundness
def⇔ for m, n ∈ Nodes, if m
= n ∧ Num(m) = Num(n), then one of (1)–(5) holds, where

(1) m.Op ∈ Copy ∧Num(m.Lt) = Num(n)

(2) m.Op ∈ Phi ∧ Num(m.Lt) = Num(m.Rt) = Num(n)

(3) m.Op = n.Op ∈ Normal ∪ Phi ∧ Num(m.X) = Num(n.X)

(4) m.Op ∈ Phi ∧ n.Op ∈ Normal ∧
Num(n) ∈ Jtarget ′(BB(m),Num(m.Lt),Num(m.Rt))

(5) (1)–(4) with m and n interchanged .

Following are the explainations for each condition.

(1) A copy instruction is allowed to have the same value number as its operand, because it always returns
the same value as its operand.

(2) A φ function whose operands have the same value number is allowed to be assigned that value
number. This is because if two definitions of a variable are the same value, their merging also
generates that value.

(3) For Normal and Phi , two instructions are allowed to have the same value number if their operator
and operands are the same. This condition corresponds to searching the hash table in GVN.

(4) It is Condition (4) that distinguishes PVNRE from GVN, as it can detect redundancy beyond φ
functions.

Conditions (1) – (5) imply that two different Fixed instructions with the same value number do not
satisfy the soundness. In addition, it is worth noting that the opposite direction is not required to be
satisfied for soundness. In this case, the soundness of the algorithm is satisfied, but its completeness is
compromised.

Theorem 5.13 (Redundancy Theorem). If Op, Lt, Rt, and Num satisfies soundness, then for
p ∈ P [start , end] and 1 ≤ i < j ≤ λ(p),

Num(pi) = Num(pj) ∧ Transp∀(Num(pi), p[i , j]) ⇒ Value(p, i) = Value(p, j) .

Intuitively, if two instructions have the same value number, and the execution between them is along a
Transp∀ path, they compute the same value. We can prove the theorem by induction on the depth of
data dependency with Fixed as a basis as we show in the Appendix A.

Note that the algorithms shown in Fig. 6, 10, and 11 satisfy the soundness of Op, Lt , Rt , and Num.
Based on the theorem, PVNRE solves data flow equations in order to find instructions with the same
value number between which there exists a Transp∀ path.

5.8 Data-Flow Equation System

Equations for AVAILall and AVAILsome are as follows.

AVAILall
in (α,n) =

∧
∀m∈Pred(n)

(
(AVAILall

out (α,m) ∧Transp(α,m→n)) (1)

∨(AVAILall
out(β,m) s.t. α ∈ Jlink ′(BB(n), β,m→n))

)
(2)

15

AVAILall
out (α,n) = AVAILall

in (α,n) ∨ (n ∈ DefNodes(α)) (3)

AVAILsome
in (α,n) =

∨
∀m∈Pred(n)

(
(AVAILsome

out (α,m) ∧ Transp(α,m→n)) (4)

∨(AVAILsome
out (β,m) s.t. α ∈ Jlink ′(BB(n), β,m→n))

)
(5)

AVAILsome
out (α,n) = AVAILsome

in (α,n) ∨ (n ∈ DefNodes(α)) . (6)

Predicate (1) and (4) are the cases where α propagates unchanged, while (2) and (5) cover the situations
where α is converted into β.

Equations for ANTIC all and AVAILMsome are as follows.

ANTIC all
out(α,m) =

∧
∀n∈Succ(m)

(
(ANTIC all

in (α,n) ∧ Transp(α,m→n)) (7)

∨
∨
∀β

(ANTIC all
in (β,n) s.t. β ∈ Jlink ′(BB(n), α,m→n))

)
(8)

ANTIC all
in (α,n) = ANTIC all

out (α,n) ∨ (n ∈ DefNodes(α)) (9)

AVAILMsome
in (α,n) =

∨
∀m∈Pred(n)

(
(AVAILMsome

out (α,m) ∧ Transp(α,m→n)) (10)

∨(AVAILMsome
out (β,m) s.t. α ∈ Jlink ′(BB(n), β,m→n))

)
(11)

KILL(α,n) = AVAILall
in (α,n) ∨ ANTIC all

in (α,n) (12)
AVAILMsome

out (α,n) = (AVAILMsome
in (α,n) ∧KILL(α,n))

∨(n ∈ DefNodes(α)) (13)

Predicate (8) denotes the case where β is converted into α when the control flow is traced backward.
AVAILMsome is akin to AVAILsome , but the condition KILL is added to prevent speculative insertion of
instructions.

PVNRE solves the above equations by computing maximum fixed points.

Theorem 5.14 Maximum fixed point (MFP) solutions to AVAILall , AVAILsome , and AVAILMsome are
equal to their meet-over-all-paths (MOP) solutions. An MFP solution to ANTIC all does not match its
MOP solution, but is a correct one.

The proof of the theorem can be seen in the Appendix B.
The correctness of the MFP solution to ANTIC all ensures soundness of PVNRE, but the incomplete-

ness of the solution implies that there might exist some redundancy that PVNRE cannot eliminate. In
fact, however, programs encountered in real life rarely contain such redundancies.

5.9 Formalization of Insertion Points

In order to make partially redundant instructions totally redundant, PVNRE inserts arithmetic instruc-
tions and φ functions into the original program. In this section, we use the following notations.

AVAIL = Must
def⇔ AVAILall ∧ AVAILMsome

AVAIL = May
def⇔ ¬AVAILall ∧ AVAILMsome

AVAIL = No
def⇔ ¬AVAILall ∧ ¬AVAILMsome .

Definition 5.15 (InsertNormal). For α ∈ Nums,m,n ∈ Nodes,

InsertNormal(α,m→n) def⇔
(AVAILin(α,n) = No ∧ (n ∈ DefNormalNodes(α))) (14)
∨(¬ ∃β . α ∈ Jlink ′(BB(n), β,m→n)
∧AVAILout (α,m) = No ∧AVAILin(α,n) = May ∧ ANTIC all

in (α,n)) (15)
∨(∃γ . γ ∈ Jlink ′(BB(n), α,m→n)
∧AVAILout (α,m) = No ∧AVAILin(γ,n) = May ∧ANTIC all

in (γ,n)) . (16)

16

Predicate (14) represents the points immediately before the non-redundant instructions. PVNRE
(and also PRE) stores the value of a non-redundant instruction to a temporary variable, and modifies
the following instructions which compute the same value, so that they refer to this variable instead
of computing the value. (15) and (16) are the conditions to insert instructions at the edges where
availability turns from No to May. They denote the cases where a value number is converted or not
converted, respectively, at a join node.

Definition 5.16 (InsertPhi). For α0, α1, α2 ∈ Nums,N ∈ BBNodes,

InsertPhi(α2 ,N , α0 , α1) def⇔
α2 ∈ Jtarget ′(N, α0, α1) (17)
∧(AVAILin(α2 ,Head(N)) = Must

∨(AVAILin(α2 ,Head(N)) = May ∧ ANTIC all
in (α2 ,Head(N)))) (18)

∧¬ ∃n ∈ Nodes . (n.Op = φN ∧ Num(n) = α2

∧Num(n.Lt) = α0 ∧ Num(n.Rt) = α1) . (19)

φ functions are inserted to explicitly represent the conversion of value numbers in a program. Condition
(18) is necessary because there must exist instructions referred to by the operands of φ functions. In
addition, (19) implies that it is not necessary to insert φ functions whose equivalents already exist in the
original program.

5.10 Instruction Insertion and Redundancy Elimination

PVNRE assigns a unique variable to each value number. These new variables must not be the same as
the variables in the original program. Var(α) denotes a variable assigned to value number α.

Let InsertionNums(m→n) be a set of value numbers of arithmetic instructions that is to be inserted at
m→n. PVNRE inserts instructions according to the ascending order of value numbers in InsertionNums.
The inserted instruction for α is Var(α) := Var(α.Lt) α.Op Var(α.Rt). The reason for the ascending
order insertion is that if there is true data dependency between value numbers in InsertionNums, we
need to insert the dependent one below. Here, we utilize the numerical order constraint (Definition 5.1).

As for φ functions, given InsertPhi(α2 ,N , α0 , α1), the instruction to be inserted at the head of block
N is Var(α2) := φN (Var(α0),Var(α1)).

Furthermore, for n ∈ Nodes s.t. n.Op /∈ Normal∧n ∈ DefNodes(Num(n)), x := Var(Num(n)), where
x is a destination variable of n, is inserted immediately after n. The destination of n is then altered into
Var(Num(n)).

Since the above insertion and transformation make all the arithmetic instructions in the original pro-
gram totally redundant, we can replace the right-hand side of all those instructions with Var(Num(n)),
thus, eliminating all the redundancy.

A brief proof of the soundness of PVNRE and its complexity can be seen in the Appendix C.

5.11 Complexity

Let p and n be the number of φ functions and the other instructions, respectively, in the original program.
If we consider and analyze each instruction separately, one instruction generates O(x2) new φ functions in
the worst case, where x denotes the number of φ functions before the data flow analysis of the instruction.
Thus the final number of φ functions will be O(p2n

), which means that the maximum value number can
be O(n + p2n

). This results in the complexity of O(n2 + np2n

) in the data flow analyses. In practice,
however, one instruction generates at most p new φ functions, so that we can expect the complexity of
O((1 + p)n2).

6 Experimental Results

We implemented PVNRE in a Java just-in-time (JIT) compiler that we are now developing, called RJJ.
RJJ is invoked from kaffe-1.0.7 [10], a free implementation of a Java virtual machine. This time, we used

17

0%

20%

40%

60%

80%

100%

E
lim

in
at

ed
 r

ed
un

da
nc

y

GVN GVN+PRECP1 GVN+PRECP2 GVN+PRECP3GVN+PRECP5

compress jess raytrace db javac mpegaudio jack geom. mean

Type I ~ VIII

Figure 13: Dynamic counts of eliminated redundancies (PVNRE = 100%)

0%

50%

100%

A
na

ly
si

s
tim

e

150%

GVN GVN+PRECP1 GVN+PRECP2 GVN+PRECP3

compress jess raytrace db javac mpegaudio jack geom. mean

GVN+PRECP5

Figure 14: Analysis time (PVNRE = 100%)

RJJ only for counting the dynamic number of redundancies eliminated and measuring analysis time; we
delegated the generation of execution code to a JIT compiler in kaffe.

We also implemented dominator-based GVN and GVN+PRECP. We refer to algorithms that ex-
ecute both PRE and CP exactly once, at most twice, and at most three times as GVN+PRECP1,
GVN+PRECP2, and GVN+PRECP3, respectively. GVN+PRECP2 and GVN+PRECP3 stop itera-
tion when further improvement cannot be achieved.

We eliminated redundancy not only in arithmetic but also in load instructions. We assumed a new
memory model for Java (JSR-000133), so that we aggressively eliminated redundant loads. To measure
the intrinsic power of PVNRE, we did not preserve the exception order before and after optimization.

As benchmarks, we used SPECjvm98 [18]. All measurements were collected on Linux 2.4.18 with a
2.20 GHz Xeon and 512 MB main memory.

6.1 Effectiveness of Redundancy Elimination

We calculated the dynamic counts of reduced instructions for all the executed methods. Figure 13
shows the results. Each bar corresponds to PVNRE, GVN, GVN+PRECP1, GVN+PRECP2, and
GVN+PRECP3 from left to right, except that we also show the result of GVN+PRECP5 for “compress.”
Further iteration of PRE and CP made no improvement. The bars are normalized to PVNRE = 100%,
and the breakdown of PVNRE represents Types I – VIII from bottom to top. Note that GVN = Type I
+ V, and GVN+PRECP1 = Type I + II + III + IV + V. It is also worth noting that Types I and V in
the results represent only the redundancies dominator-based GVN can detect. Thus, for example, Type
I(2) in Fig. 1 is included in Type II in the graph. We can observe that Types II and VI do not appear
in the graph except in “compress,” while Type V accounts for over 50% on an average.

The result indicates that we need to iterate PRE and CP three times (or five times for “compress”)
to completely remove redundancies of Types VI, VII, and VIII, or in other words, to match the ability
of GVN+PRECP to that of PVNRE. Those redundancy types account for 19% in dynamic counts, thus
it is not sufficient to perform only GVN, or GVN and PRE with no iteration.

18

6.2 Analysis Time

Figure 14 shows the total analysis time of GVN and GVN+PRECPs for all the executed methods in
comparison with that of PVNRE. We did not include the time to convert the program into a non-SSA
form in GVN+PRECPs. Note that the analysis time of GVN+PRECPs does not increase proportionally
to the number of iterations because iteration is stopped when further improvement cannot be achieved.
GVN+PRECP3, which has almost the same ability to eliminate redundancy as PVNRE, is 82% slower
than PVNRE for “jess,” and 42% slower on an average. That means PVNRE achieves a 45% maximum
speedup over GVN+PRECP3, and a 30% speedup on an average.

7 Related Work

Several approaches [16, 19] that are as powerful as PVNRE have been proposed, but actual data have
never been presented concerning their analysis speed compared with traditional algorithms. In con-
trast, we measured the analysis time of PVNRE on real benchmarks and showed that it is faster than
GVN+PRECP. Moreover, we estimate that the existing approaches are slower than PVNRE as follows.
Rosen et al.[16] proposed an algorithm that converts the lexical appearance of instructions through φ
functions. It first assigns an integer called rank to each instruction that represents the depth of data
dependency. It then performs copy propagation, code motion and redundancy elimination separately
for each class of instructions with the same rank. Therefore it is essentially as slow as PRECP. Steffen
et al.[19] proposed a two-phased algorithm that first computes Herbrand equivalences of instructions
represented by a Value Flow Graph. It then performs PRE on that graph. In comparison, our value
numbering is much faster than its equivalence computation. In addition, our work relies solely on the
traditional SSA form and on-demand value number conversion at join nodes, while their algorithm suffers
from an overhead due to a necessary conversion of the whole-program graph representation.

Bodik et al.[2] proposed “Path-Sensitive Value-Flow Analysis,” which extends the optimizing power
of GVN and PRE by using symbolic back-substitution at the cost of analysis time. Actually, PVNRE
also includes part of the extended ability, but we did not encounter such a situation in SPECjvm98
where this kind of ability is of use. Rather, the emphasis of our work is on providing the power of
GVN+PRECP in a shorter analysis time.

Bodik et al.[3] also proposed the framework for PRE that we utilize in PVNRE. Its optimizing power
is the same as that of the existing frameworks for PRE, hence, is weaker than that of PVNRE. Chow
et al.[6] proposed PRE on the SSA form. The goal of their work was to speed up analysis by exploiting
sparse data structures. Thus, its optimizing ability is just the same as that of the traditional PRE
algorithms.

Alpern et al.[1] proposed GVN using a partitioning algorithm, and Rüthing et al.[17] extended it to
detect Herbrand equivalences. PVNRE cannot use partitioning because it has to assign value numbers
even while it is solving data-flow equations. Click [7] proposed an algorithm combining GVN and
aggressive code motion. It first performs hash-table-based GVN, and then moves instructions out of loops
using dominator relationship. It can eliminate partial redundancy, but cannot detect path-dependent
redundancy. Cooper et al.[8] proposed an algorithm that first performs GVN using a hash table and then
performs PRE on value numbers. It is similar to PVNRE in that it propagates value numbers in data-
flow analyses, but it does not convert them using φ functions. Thus, it cannot remove path-dependent
redundancy.

8 Conclusion

We proposed PVNRE, a redundancy elimination algorithm that manages both optimizing power and
analysis time. Using value numbers in data-flow analyses, PVNRE can deal with data-dependent re-
dundancy. It can also detect path-dependent partial redundancy by converting value numbers through
φ functions on demand. It represents data dependency by the numerical order between value numbers;
therefore it can quickly process data-dependent redundancy during data-flow analyses, and avoid the
overhead due to the iteration of PRE and CP.

19

We implemented PVNRE in a Java JIT compiler and conducted experiments using SPECjvm98. The
results showed that PVNRE has the same optimizing power but has a maximum 45% faster analysis speed
than algorithms that iterate PRE and CP. These results show that PVNRE is an outstanding algorithm
for a runtime optimizing compiler, where both optimizing power and analysis time are important.

We are currently integrating PVNRE with redundant exception elimination in Java. We expect that
all redundancy eliminations that preserve exception orders can be performed in one pass.

References

[1] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in
programs. In Conference Record of the Fifteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 1–11, San Diego, California, 1988.

[2] Rastislav Bodik and Sadun Anik. Path-sensitive value-flow analysis. In Symposium on Principles
of Programming Languages, pages 237–251, 1998.

[3] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete removal of redundant computations.
In SIGPLAN Conference on Programming Language Design and Implementation, pages 1–14, 1998.

[4] Preston Briggs and Keith D. Cooper. Effective partial redundancy elimination. ACM SIGPLAN
Notices, 29(6):159–170, 1994.

[5] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering. Software Practice and
Experience, 27(6):701–724, 1997.

[6] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng Tu. A new
algorithm for partial redundancy elimination based on ssa form. In Proceedings of the 1997 ACM
SIGPLAN conference on Programming language design and implementation, pages 273–286. ACM
Press, 1997.

[7] Cliff Click. Global code motion: global value numbering. ACM SIGPLAN Notices, 30(6):246–257,
1995.

[8] Keith Cooper and Taylor Simpson. Value-driven code motion. Technical report,
CRPC-TR95637-S, Rice University, 1995.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Effi-
ciently computing static single assignment form and the control dependence graph. ACM Transac-
tions on Programming Languages and Systems, 13(4):451–490, October 1991.

[10] Kaffe.org. Kaffe Open VM. http://www.kaffe.org/.

[11] Gary A. Kildall. A unified approach to global program optimization. In Proceedings of the 1st
annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 194–
206. ACM Press, 1973.

[12] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy code motion. ACM SIGPLAN Notices,
27(7):224–234, 1992.

[13] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: theory and practice.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16(4):1117–1155, 1994.

[14] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies. Communi-
cations of the ACM, 22(2):96–103, 1979.

[15] Steven S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann Publishers,
1997.

[16] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computa-
tions. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 12–27. ACM Press, 1988.

20

[17] Oliver Rüthing, Jens Knoop, and Bernhard Steffen. Detecting equalities of variables: Combining
efficiency with precision. In Static Analysis Symposium, pages 232–247, 1999.

[18] Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98/.

[19] Bernhard Steffen, Jens Knoop, and Oliver Rüthing. The value flow graph: A program representation
for optimal program transformations. In European Symposium on Programming, pages 389–405,
1990.

Appendix

A Theorem 5.13 (Redundancy Theorem)

Definition A.1 (DomBedges .) For u ∈ Nodes,

DomBedges(u) def= {e = m → n | e ∈ Bedges ∧ n dom u} .

Using the reducibility of the control-flow graph, we can prove the following two lemmas.

Lemma A.2 For p ∈ P [start , end] and 1 ≤ j < i ≤ λ(p),

pi.Op ∈ Normal ∪Copy ∧ pj = pi .X
⇒ ∀j ≤ k < i . pk→pk+1 /∈ DomBedges(Node(pi .X)) .

Lemma A.3 For e ∈ Edges and n ∈ Nodes,

e /∈ DomBedges(n) ⇒ Transp(Num(n), e) .

The following Theorem A.4 indicates that the value numbers of the operands of an instruction is
transparent along the paths between the operand instructions and the instruction.

Theorem A.4 (Transparency of Operands.)
For p ∈ P [start , end] and 1 ≤ j < i ≤ λ(p),

pi.Op ∈ Normal ∪ Copy ∧ pj = pi .X ⇒ Transp∀(Num(pj), p[i , j])

Proof: This theorem follows from Lemma A.2, A.3, and Definition 5.5(2). ��

We cannot propagate Jtarget to the original point along the backedges of the enclosing loops as
follows.

Lemma A.5 For α0, α1, α2 ∈ Nums, N ∈ BBNodes, p ∈ P [start , end], and 1 ≤ i < j ≤ λ(p),

α2 ∈ Jtarget(N, α0, α1) ∧ Node(pi) = Node(pj) = Head(N)

⇒ ¬Transp∀(α2 , p[i , j])

From Theorem A.4 and Lemma A.5, we can prove Theorem 5.13.

Proof: Our proof will proceed by induction on the depth of data dependency with Fixed as a basis.
From the fact that Num(pi) = Num(pj), we can rely on the soundness of value numbering (Definition
5.12). Induction hypothesis is satisfied by Theorem A.4. For the case of Definition 5.12(4), we appeal to
Lemma A.5. ��

21

B Theorem 5.14 (MFP and MOP solution)

The MFP solution to a problem matches its MOP solution if all of its flow functions are monotone and
distributive [11]. Transp, (n ∈ DefNodes(α)), and KILL, which appear in the data-flow equations for
AVAILall , AVAILsome , ANTIC all , and AVAILMsome , are monotone and distributive. Jlink ′ is monotone,
but is not distributive for ∧. The flow function of Jlink ′ can be generalized into the form of f(〈xα〉) =
〈xα ∨ xβ〉, where 1 ≤ α, β ≤ max (Nums).

Lemma B.1 Jlink ′ is monotone.

Proof: 〈xα〉 ≤ 〈yα〉 ⇒ xα ≤ yα ⇒ xα ∨xβ ≤ yα ∨ yβ ⇒ 〈xα ∨xβ〉 ≤ 〈yα ∨ yβ〉 ⇒ f(〈xα〉) ≤ f(〈yα〉) ��

Lemma B.2 Jlink ′ is distributive for ∨, but not for ∧.

Proof: For ∧, f(〈xα〉 ∧ 〈yα〉) = 〈(xα ∧ yα) ∨ (xβ ∧ yβ)〉
= 〈(xα ∨ xβ) ∧ (yα ∨ yβ)〉 = f(〈xα〉) ∧ f(〈yα〉).
We can prove the distributivity for ∨ in the same manner. ��

We can prove Theorem 5.14 as follows.

Proof: From Lemma B.1 and B.2, it is clear that MFP solutions to AVAILsome and AVAILMsome are
equal to their MOP solutions. The proof by Kildall [11] implies that an MFP solution to ANTIC all is a
correct solution, but does not match its MOP solution.

Jlink ′ for AVAILall is distributive because Lemma A.5 means that

∀α∃β . α ∈ Jlink ′(BB(n), β,m→n) ⇒ ¬AVAILall
out(α,m),

and the flow function is essentially f(〈xα〉) = 〈xβ〉. Consequently, an MFP solution to AVAILall matches
its MOP solution. ��

C Soundness of PVNRE

Theorem C.1 (Soundness of PVNRE). The value of any instruction on any execution path after
optimization by PVNRE is the same as that of the corresponding instruction (if any) before the opti-
mization.

Proof: We can prove the syntactic soundness; for example, the operands of a newly-inserted Normal
instruction whose value number is α refer to instructions whose value numbers are α.X. Thus the value
numbers of the newly-inserted instructions satisfy Definition 5.12. It follows that Theorem 5.13 holds true
even after the optimization. From Theorem 5.14, Definition 5.15, and 5.16, all the Normal instructions
become totally redundant in terms of Theorem 5.13. Therefore we can replace the right-hand side of all
those instructions n with Var(Num(n)). ��

22

